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Abstract

Existing conceptual growth models for faults in layered sequences suggest that faults first localise in strong, and brittle, layers and are later

linked in weak, and ductile, layers. We use the discrete element method for modelling the growth of a normal fault in a brittle/ductile multilayer

sequence. The modelling reveals that faults in brittle/ductile sequences at low confining pressure and high strength contrast localise first as Mode I

fractures in the brittle layers. Low amplitude monoclinal folding prior to failure is accommodated by ductile flow in the weak layers. The initially

vertically segmented fault arrays are later linked via shallow dipping faults in the weak layers. Faults localise, therefore, as geometrically and

kinematically coherent arrays of fault segments in which abandoned fault tips or splays are a product of the strain localisation process and do not

necessarily indicate linkage of initially isolated faults. The modelling suggests that fault tip lines in layered sequences are more advanced in the

strong layers compared with weak layers, where the difference in propagation distance is most likely related to strength and/or ductility contrast.

Layer dependent variations in fault localisation rates generate fringed rather than smooth fault tip lines in multilayers.

q 2006 Elsevier Ltd. All rights reserved.

Keywords: Discrete element method; Fault growth; Fault refraction; Fault tip line; Mohr circles; Stress and strain paths
1. Introduction

There are a variety of conceptual models for the growth of

faults in mechanically layered (brittle/ductile) sequences, all of

which acknowledge that faults commonly show lithologically

controlled dip changes on cross-sections, with steeper fault

dips in strong layers and shallower dips in weaker layers

(Fig. 1). These dip changes are attributed to a variety of

mechanisms (Ferrill and Morris, 2003 and references therein):

(i) post-faulting differential compaction, (ii) active faulting,

with slip along layers or intersecting faults, (iii) linkage of an

originally vertically-segmented fault, and (iv) fault initiation

and propagation with dip controlled by rock properties and

effective stresses. Two of these mechanisms ((iii) and (iv)),

which are not mutually exclusive, underpin the most popular

models for the growth of faults within layered sequences. For

mechanism (iii) faults first localise in the strong layers and are

later linked via faults in the weak layers (Eisenstadt and De

Paor, 1987; Peacock and Sanderson, 1992; McGrath and

Davison, 1995; Childs et al., 1996; Crider and Peacock, 2004).

In this case, fault localisation and dips within the strong layers
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are controlled by rock properties and deformation conditions,

and therefore by the failure mode and/or failure angles, while

dips within the weak layers are a consequence of segment

linkage. An alternative model (iv) suggests that localisation

and associated dip changes do not develop in association with

fault segmentation and are entirely controlled by the failure

mode and failure angles of the faulted weak and strong layers.

Distinguishing between these models on observational or

theoretical grounds is not, however, always straightforward.

Ferrill and Morris (2003) describe small-scale faults

exhibiting lithologically controlled dip variations (Fig. 2a)

They consider two mechanisms of formation for the fault

geometries they observe, with either fault localisation first

occurring within the strong layers (Fig. 2b) or fault localisation

first occurring within the weak layers (Fig. 2c). In both cases

fault dips are determined by the rheological properties of

the layers with steep dips in the strong layers and relatively

shallow dips in the weak layers. The faults studied by

Ferrill and Morris (2003) do not have geometrical features

that might indicate whether they initiated in the strong or weak

layers, e.g. abandoned tips or splays. Other workers have

described faults with lithologically controlled dip variations

that, from field relations, can be demonstrated to have formed

by linkage of segments that formed within the strong layers

(e.g. Peacock and Zhang, 1993; Childs et al., 1996). The

absence of discriminating traits of segmentation may support
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Fig. 1. A small-scale normal fault (displacementZ30 cm; downthrows to the right) exposed in a cliff-section east of Kimmeridge Bay, Dorset, UK, which illustrates

the importance of lithological control on fault dip and fault refraction. This normal fault cuts a shale-dominated sequence (Kimmeridge Clay Formation, Upper

Jurassic) that contains calcareous shale layers. Within these calcareous shales, fault segments are nearly vertical and are linked via shallow dipping faults within the

weaker shale layers. Fault displacement on this ‘staircase’ geometry leads to the development of pull-aparts.
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the application of a model in which the faults were not, in fact,

segmented in their early stages of growth, but formed by

refraction across bedding planes during progressive forward

tip-line propagation (Fig. 2d).

Although both linkage and forward propagation models

(Fig. 2) provide a plausible rationale for field observations that

can be related to failure criteria, they otherwise lack a

mechanical basis. Mechanical analyses using failure criteria

(e.g. Coulomb–Mohr, Griffith) can provide useful insights into
Fig. 2. (a) Schematic geometry of normal faults cutting limestone layers of the Cre

Texas and three possible models for their growth ((b)–(d)) (after Ferrill and Morris, 2

the steep segments are later linked via shallow faults. In (c) the faults localise first in

the fault trace is not initially segmented but the trajectory of the upward propagati
the orientation of principal stresses and consequently faults, but

do not allow definition of the relative timing of failure and

localisation in a mechanical multilayer (Mandl, 2000).

Since observational data and theoretical grounds do not

provide a definitive answer to questions relating to the

localisation of faults within multilayers, we use a numerical

approach that is capable of modelling the localisation of faults

within multilayer sequences. The aim of this paper is to provide

a mechanical basis for the localisation and linkage of normal
taceous Buda Limestone exposed along Interstate Highway 10 (I-10), in west

003, their table 1 and fig. 5). In (b) the faults localise first in the strong layers and

the weak layers and the shallow segments become linked via steep faults. In (d)

ng fault tip changes as it crosses a lithological interface, i.e. a bedding plane.
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faults in a layered sequence using the discrete element method

(DEM). The DEM has recently been used for modelling the

formation of accretionary wedges (Burbidge and Braun, 2002),

fault-propagation folds (Finch et al., 2003, 2004), out-of-plane

fault propagation (Strayer and Suppe, 2002) and the interaction

of two overlapping faults (Imber et al., 2004). The method is

capable of modelling failure and localisation without the

necessity to define constitutive equations, as is the case for

the more commonly used continuum methods. It is therefore

the ideal tool for addressing questions relating to fault

localisation in multilayered brittle/ductile sequences. As is

described later, our models comprise brittle materials that

deform by elastic deformation followed by fracturing and

ultimately failure at peak strength, whilst our ductile material is

frictional-plastic throughout deformation, displaying an inelas-

tic deformation response without fracturing; these materials

lead to macroscopic deformations that are discontinuous and

continuous, respectively. The results of the modelling support

the notion that vertically segmented fault arrays initially

develop in the strong, and brittle, layers and are later linked by

shallower dipping faults in the weak, and ductile, layers.

2. Methods

2.1. Principles of DEM

The DEM is a broad class of methods for modelling the

finite displacements and rotations of discrete bodies (Cundall

and Hart, 1992). The DEM can be implemented in two and

three dimensions. We use a 2D approach with circular particles

as introduced by Cundall and Strack (1979) and implemented

in commercially available software (PFC-2D; Itasca Consult-

ing Group, 1999). Particles are treated as rigid discs and are

allowed to overlap at particle–particle and particle–wall

contacts. Walls are rigid boundaries of arbitrary shape, to

which constant velocity or constant stress conditions can be

applied. The amount of overlap at each contact is small

compared with particle size and the contact normal force is

linearly related to the amount of overlap. If the contact shear

force exceeds a critical value, which is determined by a contact

friction coefficient, slip occurs at the contact. Particles can be

bonded together with linear elastic cement (parallel bond

model; Itasca Consulting Group, 1999; Potyondy and Cundall,

2004) and if the critical tensile or shear stress (which is

typically normally distributed in a bonded model) at a bonded

contact is exceeded the bond breaks.

For a more detailed description of this numerical method the

reader is referred to Cundall and Hart (1992), Hazzard et al.

(2000), Potyondy and Cundall (2004) and references therein.

2.2. Model material calibration

In contrast to continuum methods, where the rheology of the

model material is defined using constitutive laws, the

macroscopic response of the (bonded) particle assemblage in

DEM models has to be calibrated using a numerical laboratory.

The microproperties (particle size and size distribution, particle
and bond stiffness, contact friction, bond strength) are adjusted,

mainly by trial and error, to obtain the desired model

macroscopic response calibrated to laboratory rock defor-

mation data. The resulting microproperties do not replicate true

grain-scale physics because the model particles are orders of

magnitude larger than the grains of the equivalent rock and

each particle therefore represents a small volume of rock.

Although our approach did not attempt to exactly reproduce the

rheology of a particular rock based on experimental data,

the macroscopic properties of our model materials reproduce

the general rheological behaviour of a strong, brittle material

and a weak, ductile one.

The particles in this study have a uniform size distribution

with radii ranging between 31.25 and 62.50 mm, respectively.

The rheology of a strong material, consisting of bonded

particles, and a weak material, consisting of non-bonded

particles, was investigated. The bonded particles have normal

and shear contact/bond stiffnesses of 50 and 16.7 GPa,

respectively, a contact friction coefficient of 1.0 and normally

distributed tensile and shear bond strengths with means of 250

and 125 MPa and coefficients of variation of 1/12 and 1/6,

respectively. The bond strength distributions have cut-offs of

G2 standard deviations and the width of each bond is half

the radius of the smaller of the two bonded particles. The non-

bonded particles have the same particle sizes and therefore size

distribution, as the bonded material, a normal and shear contact

stiffness of 50 GPa and 16.7 GPa, respectively, and a contact

friction coefficient of 0.5.

The strength of bonded materials is sample size dependent

(strength decreases with increasing sample size; Potyondy and

Cundall, 2004), thus proper calibration requires tests on samples

at a scale appropriate to the model. In our multilayer model, the

basic mechanical unit is one bed. Therefore the rheology of both

the bonded and non-bonded material was investigated using

calibration sample widths equal to the thickness of the strong

layers in the multilayer, i.e. 1 m (see below).

The rheology of the non-bonded material was investigated

using confined (25 MPa) biaxial compression tests on samples

that are 1 m wide and 2 m high. Since the material is

cohesionless and exhibits no (bulk) elasticity, the only bulk

property that was calculated for each test (NZ30) is the friction

coefficient, which can be easily obtained for straight failure

envelopes.

The rheology of the bonded material was investigated using

unconfined biaxial compression tests on samples that are 1 m

wide and 2 m high. These tests (NZ30) were used for

calculating the bulk elastic properties (Young’s modulus,

Poisson’s ratio) and provided the unconfined compressive

strength. Additionally, direct tension tests on dog-bone shaped

samples (NZ196) with a central thickness of 1 m were

performed at various confining pressures in order to define

the failure envelope in the tensile stress field.

Although calibration tests on 1 m wide samples provide the

bulk rheological properties and their variability at the scale of

the multilayer model, they do not give insights into strain

distribution (e.g. localisation) within the sample due to their

poor resolution (ca. 10 particles wide). To examine localisation



Fig. 3. Model boundary conditions. (a) PFC-2D model consisting of O23,400 cylindrical particles. The strong and weak layers consist of bonded and non-bonded

particles, respectively (bonds are shown in enlarged figure). Overburden pressure is approximately 23 MPa and the hanging wall moves with constant velocity

parallel to a predefined fault at the base of the model. (b) Schematic block diagram showing the propagation directions of an ideal elliptical normal fault. The tip line

bounds an elliptical area of failed rock (white). Since the fault plane propagates radially (arrows show tip line propagation direction) only two sections (shaded) have

no out-of-plane fault propagation. The 2D numerical model is located within the plane of no lateral fault propagation. This fault is shown schematically as a single

fault surface, but in all probability will comprise an array of segments.
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behaviour in our model materials nine biaxial tests were

performed on samples that are 5 m wide and 10 m high and

contain over 6000 particles.
2.3. Multilayer faulting model boundary conditions

The multilayer model used is 15 m wide, 13 m high and is

comprised of O23,400 particles (Fig. 3a). The model is

composed of four 1 m thick strong (bonded particles) and four

1.5 m thick weak (non-bonded particles) layers. The top 3 m of

the model comprises a layer of non-bonded particles. The

primary function of this top layer is model confinement, which

is achieved by applying a force equivalent to a lithostatic stress

of approximately 23 MPa (ca. 1 km burial depth) to particles at

the surface of the model. The sides and base of the model are

defined by two rigid L-shaped walls which meet at a predefined

608 dipping fault at the base of the model. The L-shaped

hanging wall is moved with constant velocity parallel to the

predefined fault; this pre-conditioning ensures the formation of

one fault, rather than several faults. The model is saved in 1 cm

throw increments and the final throw is 10 cm; models with

throws beyond the point of localisation (ca. 10 cm) will be

published elsewhere. With respect to the ideal elliptical fault

surface shown in Fig. 3b, the model is located in the plane of no

lateral propagation along a chord through the point of

maximum displacement.
2.4. Stress and strain in discontinua

Stress and strain are continuum concepts, whereas our

model material is comprised of discrete particles and is

therefore a discontinuum (compressive stress positive and sIO
sIIOsIII). Various methods for homogenising DEM models to

allow comparison with continuum mechanics solutions have
been proposed and successfully implemented (e.g. O’Sullivan

et al., 2003). The stress tensor can be obtained for each particle

in our models, but the state of stress at this point is meaningless

on a macroscale, i.e. on the scale of the layers. To homogenise

particle stresses the average stress tensor is calculated for

circular regions (Potyondy and Cundall, 2004).

The deformation tensor D, which is sometimes called the

positions gradient tensor (see Appendix A), can be obtained for

small and large strains using the least-squares method

described in Oda and Iwashita (2000). For each circular region

(diameter depends on the scale of interest) the particle closest

to the centre is found and the relative displacements of particles

surrounding this particle are calculated in order to remove the

translational component of deformation. Once this translation

has been removed the best-fit displacement gradient tensor can

be calculated, enabling the deformation tensor D and the

Lagrangian strain tensor E to be obtained.

For the maximum shear strain contour diagrams shown (e.g.

Figs. 4e and f and 6), the displacement gradient tensor is

obtained for each particle for a circular, 0.3 m diameter,

homogenisation area containing, on average, eight particles.

Since the averaging region is a small proportion of the model

dimensions, contours of maximum shear strain are typically

quite irregular. We present both finite and incremental strain

contours to illustrate fault evolution. Incremental strains are

calculated in 1 cm throw intervals, where for each particle the

accumulated displacement of the previous stage is subtracted.

The best-fit deformation tensor for each 1 cm throw increment

can then be obtained for each particle using the same method

described above.

For the definition of the stress and strain paths at selected

locations within our model (Fig. 8) we use 1 m diameter

homogenisation areas, containing on average 92 particles, to

minimize noise. Strain paths are represented using Mohr circles



Fig. 4. (a)–(d) Plots illustrating the results of rheological testing of the strong ((a) and (c)) and weak ((b) and (d)) materials comprising the multilayer models at

various confining pressures (labelled curves). Vertical dashed lines are drawn at 0.3, 0.4 and 0.5% axial strain. (e) and (f) Contour plots showing the distribution of

maximum finite shear strain (contour interval is 0.005) within models comprising the strong (e) and weak (f) materials at axial strains of 0.3, 0.4 and 0.5% and a

confining pressure of 25 MPa. All data are for high resolution 5 m wide and 10 m high models.

M.P.J. Schöpfer et al. / Journal of Structural Geology 28 (2006) 816–833820
for the deformation tensor, which are briefly reviewed in

Appendix A.
3. Results

3.1. Macroproperties of model material

Stress vs. axial strain and volumetric strain (strictly

speaking area change in a 2D model) vs. axial strain curves

for the strong and weak model material are shown in Fig. 4.

Additionally, maximum shear strain contour plots for selected

biaxial test samples are shown (Fig. 4e and f) in order to

illustrate strain localisation. The strong material exhibits

elasticity and compaction prior to failure (Fig. 4a). The axial

strain at failure and the differential stress at failure increase

with increasing confining pressure (Fig. 4a). The amount of

strain softening decreases with increasing confining pressure,

i.e. the material becomes more ductile. The weak material
exhibits steady-state flow after a non-linear increase in

differential stress (Fig. 4b). The steady-state stress increases

with increasing confining pressure. The lack of strain softening

in the weak material is probably due to the use of rigid platens

as lateral boundaries, which do not allow the formation of a

single through-going shear zone (O’Sullivan, pers. comm.,

2004). A comparison of the volumetric strain curves for the

strong and weak material (Fig. 4c and d) reveals that at low

confining pressures (e.g. 25 MPa, see also maximum shear

strain contour plots, Fig. 4e and f) the weak material dilates and

localises earlier than the strong material. However, from these

figures it is clear that the strong material localises strain better

because it exhibits greater strain softening.

Young’s modulus and Poisson’s ratio (assuming plane

strain; Potyondy and Cundall, 2004) were obtained for the

unconfined biaxial tests (sample width 1 m, NZ30) and

determined at half the axial strain to failure and are 21.8G
1.6 GPa and 0.29G0.06, respectively. Principal stress
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diagrams with best-fit failure envelopes are shown in Fig. 5.

For the strong material a Coulomb–Mohr criterion with tension

cut-off (Paul, 1961) was fitted to the results of direct tension

tests on dog-bone shaped samples. The best-fit parameters with

curves representing the associated probability distributions are

plotted in Fig. 5 and reveal that the unconfined compressive

strength, cohesion and friction coefficient are typical of those

for strong sedimentary rocks (e.g. Hoek and Brown, 1997;

Tsiambaos and Sabatakakis, 2004). However, the ratio of

unconfined compressive strength to tensile strength is low (3.5)

compared with natural rocks (e.g. 9–17; table 6.15.1 in Jaeger

and Cook, 1976). These low ratios are typical for DEM models

using smooth, circular particles (Fakhimi, 2004) and can be

improved by using either irregular shaped particles (clumps),

by introducing a bending resistance between chains of bonded

particles (Cundall, pers. comm., 2004) or by increasing sample

resolution (table 3 in Potyondy and Cundall, 2004). For the

purpose of this article in which we examine fault localisation

within a brittle/ductile sequence, absolute strength values are

however subordinate, with strength contrast and rheology the

main controlling factors. For the non-bonded material the

average friction coefficient was calculated from the confined
Fig. 5. Principal stress diagram with best-fit failure envelopes (bold lines) for

the strong and weak material. The data for the strong material were obtained

from direct tension tests on dog-bone shaped samples with a central width of

1 m at various confining pressures and each data point represents the state of

stress at failure (NZ196). The data for the weak material were obtained from

confined (25 MPa) biaxial compression tests and each data point represents the

peak stress during loading (NZ30). The best-fit macroproperties are given,

where sucZunconfined compressive strength (MPa), TZtensile strength

(MPa), C0Zcohesion (MPa) and mZfriction coefficient. For the strong

material the different curves represent the 0.01, 0.5, 0.25, 0.50, 0.75, 0.95

and 0.99 percentile of the probability distribution. For the weak material the

average friction coefficient and the average G1 and G2 standard deviations

are shown.
biaxial tests as 0.47G0.05 (standard deviation). The Coulomb–

Mohr criterion is plotted using the average friction coefficient

and no cohesion (Fig. 5).

In summary, material properties and rheology of the strong

layers are comparable with those of strong sedimentary rocks

(e.g. Hoek and Brown, 1997; Tsiambaos and Sabatakakis,

2004), whilst the weak layers have no tensile strength and are

comparable with some shales (e.g. Petley, 1999).

3.2. Fault growth and geometry in a multilayer sequence

Fig. 6 shows the propagation of a fault through a multilayer

model at throw (t) increments of 1 cm. The stages of fault

evolution are illustrated with contours of incremental maxi-

mum shear strain for each stage. Although the total 10 cm

offset is not visible from the layer interfaces, fault development

can be examined from the changing pattern of low incremental

strains. Fig. 6 is complemented by the profiles of strain and

rotation for layer E at 2 cm throw increments (Fig. 7), which

were obtained using 1-m-wide circular homogenisation regions

with a spacing of 10 cm.

At low displacements (!3 cm) diffuse zones of defor-

mation develop on either side of the lowest strong layer (G;

Fig. 6). Up to throws of 3 cm, formation of a low-amplitude

precursory fold within this strong layer is accommodated by

flow in the underlying and overlying weak layers. At a throw of

4 cm, the lowest strong layer (G) fails in tension (Mode I

fracture) and subsequent strain is concentrated on this fault. At

throws of 5–7 cm, flow in the weak layers accommodates

folding of the second strong layer (E) until it fails in tension

arising from outer-arc extension associated with monoclinal

folding; folding is highlighted by the plateaux of other curves

shown in Fig. 7b. Flow in the weak layers is principally

accommodated within diffuse zones that are located in the

hanging wall of the incipient fault and have an overall

antithetic shear sense (see below). These antithetic shear zones

intersect the tops of the strong layers at the point of greatest

outer arc extension associated with monoclinal folding. At a

throw of 8 cm two additional Mode I fractures have formed,

one in the topmost layer (A), collinear with the array of

underlying Mode I fractures, and another one in the hanging

wall of the lowest layer (G). The latter is located on the hanging

wall hinge of the monoclinal flexure of the lowermost strong

layer and propagates from bottom to top, a direction that is

again consistent with outer arc extension. At this stage one of

the strong layers (C) is still intact, even though it is overlain

and underlain by strong layers containing an approximately

collinear array of Mode I fractures, demonstrating that the

failure of layers within a multilayer does not necessarily occur

in forward sequence. At a throw of 9 cm the fault has cut

through all of the strong layers within the sequence and

although it begins to localise within the weak layers, it has yet

to do so in the central weak layer (D). This anomaly arises due

to the localisation of a second Mode I fracture in the second

lowest strong layer (E). This new fracture formed in the

hanging wall side of the earlier fracture, which became inactive

over the 8–9 cm interval but became active again between



Fig. 6. Incremental maximum shear strain contour plots (contour interval is 0.005) of PFC-2D model of normal fault growth in a brittle/ductile sequence (tZthrow).

The different layers within the model are labelled A–H (See upper left-hand plot). See text for further explanation.
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9 and 10 cm throw. At 10 cm throw a continuous, through-

going fault is established. This fault has a ‘staircase’ geometry

in which vertical faults within the strong layers are linked by

approximately 508 dipping faults in the weak layers, producing

an average dip of ca. 608. Although individual fault segments

first develop within strong layers and do not progress simply

from bottom to top of the model, the final geometry is relatively

simple and coherent. This coherence suggests that the

deformation of both strong and weak layers throughout the

model is strongly coupled, details of which are investigated

below.
3.3. Stress and strain paths

The centre diagram in Fig. 8 shows the model in Fig. 6 at the

final throw of 10 cm contoured for maximum finite shear strain

(contour interval is 0.01). Strain and stress paths were
determined at 12 selected locations (Fig. 8). In each circular

region of 1 m diameter the average stress tensor and

displacement gradient tensor were obtained at 1 cm throw

intervals. For the strong layers, six locations of Mode I

fracturing were analysed, four along the eventual through-

going fault and two hanging wall splays. In the weak layers,

four regions were examined between the main Mode I fractures

in the strong layers and along the eventual through-going fault

and two regions were selected within the low-angle antithetic

shear zones in the hanging wall of the eventual through-going

fault. The strain paths are shown in Fig. 8 using Mohr circles

for the deformation tensor (see Appendix A for a brief review).

Rotations and stretches are easily read off these diagrams (see

Fig. A2 for ideal deformation paths) and large volumetric

strains can be simply calculated by the product of the principal

stretches. However, the volumetric strains and rotational

components of strain in this model were initially small



Fig. 7. Strain profiles in 2 cm throw increments (labelled in (b)) along the centre

of layer E of Fig. 6. The maximum finite shear strain (a) and the rotational

component of deformation (b) were obtained for 1-m-wide circular

homogenisation regions with 10 cm spacing. The two vertical dashed lines

are the locations of Mode I fractures (labelled E1 and E2; see Figs. 6 and 8).

The plateaux of the curves in (b) correspond to the limb of the monocline, the

left hand hinge of which fails between 5 and 6 cm throw.
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and are therefore shown separately in Fig. 9 for each locality.

Stress paths are shown in principal stress diagrams in Fig. 10,

in which the experimentally derived failure envelopes for the

strong and weak materials (Fig. 5) are plotted.

The strain and stress paths of the 12 locations identified in

Fig. 8 are described in four groups sharing similar evolutionary

paths. Each of these groups represents a key kinematic element

of the localisation of the fault within the modelled multilayer.

For simplicity the groups are referred to in geometric terms

relative to the eventual through-going fault and depending on

whether they occur within strong or weak layers. They are each

described in the general order in which they develop: (i)

antithetic shear zones—weak layers, (ii) synthetic faults—

strong layers, (iii) synthetic faults—weak layers, (iv) hanging

wall splays—strong layers; whilst structures (i) and (iv)

represent accommodation features associated with fault

displacement, the synthetic faults ((ii) and (iii)) eventually

become the through-going fault. Though the emphasis is on

describing the basic deformation paths for each element, we

also highlight the coupling and inter-relationships between

them. Each locality in Fig. 8 is labelled A through to H

according to the layer in which it occurs and individual strain
and stress paths for each of these locations are shown in Figs. 8,

9 and 10.

(i) Antithetic shear zones—weak layers: The two locations

(D2 and F2) straddling antithetic shear zones in weak

layers show similar strain/stress paths, though the zone

closer to the base of the model and the future main fault

(F2) shows, as expected, the larger volumetric strain

and finite strain. These zones are dilational (Fig. 9b)

with generally counter-clockwise (CCW) shearing

(positive rotation in Figs. 8 and 9d), a dominant pure

shear component (Fig. 8) and link downwards into

eventual Mode I fractures, which form the main fault

within the strong layers (Fig. 6). Their formation is

evidently related to monoclinal folding of the inter-

vening strong layers because they link the eventual

Mode I fractures arising from outer arc folding of

underlying strong layers with the complementary

monoclinal hinge on the base of overlying strong

layers (Fig. 7). After the first throw increment (1 cm)

the weak material at both locations is in its critical

stress state (Fig. 10b) and thereafter shows an almost

linear increase in volumetric strain with throw

(Fig. 9b). The continued growth of these antithetic

shears suggests that flexuring within the hanging wall

of the eventual main fault continues beyond the

formation of Mode I fractures within the strong layers

(Fig. 7), a feature which is ascribed to the irregularity of

the trace of the eventual through-going main fault (see

below). A temporary levelling off of volumetric strain

at one location (D2, Fig. 9b) is attributed to the short-

term cessation of extension across the Mode I fracture

in the second lowest strong layer (location E1).

(ii) Synthetic faults—strong layers: Four locations (A, C,

E1 and G1; Fig. 8) straddle the trace of the main fault

within the strong layers and show similar stress/strain

paths, though timing differs from one location to

another. Initially the deformation at each location is

characterised by clockwise (CW) rotation (negative

values in Fig. 9c) accompanied by an approximately

linear increase in volumetric strain (Fig. 9a) and a

progressive increase in sI and decrease in sIII

(Fig. 10a). These deformations are consistent with

monoclinal folding prior to fault localisation (Fig. 7).

Tensile failure, i.e. Mode I fracture, of each strong layer

is marked by a rapid increase in the local volumetric

strain (Fig. 9a), a slight increase in rate of rotation

(Fig. 9c) and, generally, by a corresponding stress

release (increase in sIII; Fig. 10a). The rapid volumetric

strain changes and associated Mode I fracture for-

mation do not, however, migrate progressively up the

model with time. From the base of the model Mode I

fracturing starts in the strong layers at 3 cm throw (G1),

ca. 4.5 cm (E1), 8 cm (C) and 7 cm (A), respectively.

After Mode I fracturing, most locations are character-

ised by simple extension (Fig. 8) with increasing

dilational CW shear (Fig. 9a and c), arising from



Fig. 8. Strain paths at selected locations (circled regions labelled A–H) in the multilayer model. The central diagram is of the multilayer model at a finite throw of

10 cm, which is contoured for maximum finite shear strain (contour interval is 0.01). Individual beds within the multilayer are labelled A–H. Mohr circles for finite

strain at 1 cm throw increments are illustrated; arrows connect centres of successive Mohr circles. The dashed vertical arc in each Mohr diagram is part of a unit

circle with its centre located at the origin. The centres of Mohr circles for rigid body rotation plot on this arc. The dash–dot lines are lines intersecting the origin with

slopes in 18 intervals (labelled in B). These guidelines can give quick insights into rotations (e.g. 18 CW rigid body rotation prior to formation of pull-apart as in

diagram G2). See text and Appendix A for further explanation.
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pull-apart formation. A temporary cessation of dis-

placement on the second lowest layer (at E1) is marked

by a gradual increase in CW rotation (Fig. 9c) and a

decrease in both sI and sIII (Fig. 10a), with

approximately constant volumetric strain (Fig. 9a).

This is due to the formation of a Mode I fracture in the

hanging wall of the main fault, which is active in the

last two throw increments shown (see hanging wall

splay—strong layer, location E2).

(iii) Synthetic faults—weak layers: Four locations (B, D1,

F1 and H) straddle what is to become the main fault

within the weak layers. One of these (location H)

reaches an advanced stage very early because it is

adjacent to the pre-defined fault and therefore attains

high strains at low throws, immediately reaching the

critical stress state of the weak material (Fig. 10b) and

thereafter showing approximately linear increases in

volumetric strain with throw (Fig. 9b). The rotational

component at this location shows a dramatic increase

after a throw of 4 cm (Fig. 9d), which coincides with
the formation of the first Mode I fracture (location G1).

In contrast, the other locations (B, D1 and F1) are

characterised by early stage CW rotations (Fig. 9d) with

variable degrees of compaction (Fig. 9b), which are

usually accompanied by increases in sI and little

change in sIII (Fig. 10b). Later stage decreases in both

sI and sIII (Fig. 10b), together with increases in

volumetric strain (Fig. 9b), are associated with

dilational CW shearing with a dominant simple shear

component (Fig. 8). Rotation associated with mono-

clinal flexure occurs in each weak layer from the onset

but increases abruptly at a throw of 8 cm (Fig. 9d) when

the final strong layer (C) is broken and elevated shear

strains occur along the entire fault trace (Fig. 6). This

late stage deformation reflects fault linkage and the

relatively shallow dip of the linking faults within the

weak layers. At this stage the weak material is in a

critical stress state (Fig. 10b) and thereafter shows an

approximately linear increase in volumetric strain with

throw (Fig. 9b). Again the overstep generation is not



Fig. 9. Graphs of volumetric strain ((a) and (b)) and the rotational component of deformation ((c) and (d)) vs. throw for the locations labelled in Fig. 8.
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progressive with linkages occurring at ca. 4 cm throw in

the lower part of the model (at F1), at ca. 8 cm towards

the top of the model (at B) and at ca. 10 cm towards the

middle of the model (at D1). Though the deformation

paths of each of the locations are similar, slight

differences may offer some clues to the localisation

process. The retarded localisation of a through-going

fault at D1 is associated with the relatively high

compaction (K0.14%) accommodated during the early

stages of localisation at this location. It may also be that

this retardation is, in turn, responsible for the relatively

late localisation in the overlying strong layer (C) as well

as the temporary cessation of movement on the

underlying strong layer (E1). Whether these links are

causal is unclear, but they suggest that the behaviour at

different locations along the localising fault is strongly

coupled.

(iv) Hanging wall splays—strong layers: These two

locations (E2 and G2) straddle what are to become

hanging wall splays within the strong layers. Although
the faults dip towards the main fault, their sense of

shear is in sympathy with the main fault (Figs. 8 and

9c). The two locations show similar strain paths, though

again the precise timing of events at each is different.

Prior to Mode I failure at these locations (up to 7–8 cm

throw) small linear increases in volumetric strain (up to

0.25%; Fig. 9a) are accompanied by substantial CW

rotations (ca. 18; Figs. 8 and 9c), rapid decreases in sIII

and slight increases in sI (Fig. 10a). The significant

rotations again record the development of precursory

monoclines within the strong layers, a feature that in

outcrop studies would generally be referred to as

normal drag (e.g. Barnett et al., 1987; Grasemann et al.,

2005). When throws of ca. 3 cm (at G2) and 6 cm (at

E2) are reached, Mode I fractures develop within the

same layers (at G1 and E1, respectively; Fig. 6), along

the trend of the incipient main fault, causing stress

release and an increase in sIII (Fig. 10a). Even after

Mode I failure, varying degrees of rotation continue to

occur at these locations (Figs. 7 and 9c), a feature that is



Fig. 10. Principal stress plots showing stress paths in (a) strong and (b) weak layers

for the locations labelled in Fig. 8. The experimentally derived failure envelopes of

Fig. 5 are also shown. For clarity, two plots, each with three stress paths, are

presented for both materials. Each arrow corresponds to the change of stress in a 1

cm throw increment and dots represent the state of stress prior to faulting.’
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attributed to the irregularity of the trace of the newly

formed through-going fault. In both cases stress paths

are looped or bouncing (Fig. 10a), indicating repeated

failure of layers, before rapid increases in volumetric

strain (Fig. 9a) and stress release (increase in sIII)

correspond to the formation of Mode I fractures (after

ca. 7 cm throw at G2, and 8 cm throw at E2).

In the above discussion we considered only the local

stress/strain response within the model. A proxy for the global

stress/strain response of the strong layers can be obtained by

tracing the strain energy stored in the bonds (i.e. elastic

cement) and the bond breakage events. The average strain

energy stored in each bond and the total number of broken

bonds vs. throw are plotted in Fig. 11a. An initial non-linear

increase in strain energy is followed by a slight drop in energy

due to failure (and thus removal of bonds) of the lowest layer

(G). This drop in energy is accompanied by an increase in the

number of broken bonds (Fig. 11a). After the first failure, both

the strain energy and number of broken bonds increase

gradually until the next layer (E) fails. The failure of layers A

and C show similar patterns. The drop in strain energy increases

with increasing throw and no increase in strain energy is observed

after the last strong layer failed (C) and a continuous fault has

been established. Following localisation, the strain energy

progressively decreases, stabilizing at a value equal to about

half the peak value at a throw of 0.5 m (not shown).

The stress/strain paths and the strain energy/number of

broken bonds described above are consistent with conceptual

models of fault growth in layered sequences. Fault growth can

be summarised as a three-stage process (Fig. 11b):

1. Monoclinal flexure: Folding is accommodated in the strong

layers by elastic bending prior to failure but by flow in the

weak layers, which cannot sustain bending moments.

Extension and folding leads to horizontal tensile stresses

within the strong layers.

2. Failure of strong layers: Fault segments in the strong layers

develop within the precursor monocline. The layers fail in

tension and Mode I fractures form. Failure of the strong

layers leads to release of tensile stress (increase in sIII) and

a rapid increase in volumetric strain. After the first

increment of failure, which is pure Mode I, the fractures

develop a shear component due to the formation of pull-

aparts within the strong layers. Despite the formation of

fractures in the strong layers, much of the offset is still

accommodated by monoclinal folding to provide a zone of

fault-related normal drag.

3. Formation of through-going fault: After failure of all strong

layers a through-going fault develops with localisation of

strain in the weak layers, at a throw of ca. 0.1 m. Segment

linkage leads to a staircase-geometry, with steeply dipping

fault segments in the strong layers and relatively shallow

dipping faults in the weak layers. With the formation of a

through-going fault, normal drag becomes progressively

less significant with increasing throw (beyond the 10 cm

throw shown in Fig. 6) so that discontinuous shear



Fig. 11. Three-stage development of fault growth in a multilayer sequence as illustrated by (a) plot of number of broken bonds and average strain energy per bond vs.

throw recorded in the model shown in Fig. 6 and (b) schematic representation of stages in development of the same model. The data in (a) were obtained from the

model by tracking each bond breakage event and the strain energy stored in the bonds. The onset of failure of each strong layer is labelled and marked with vertical

dashed lines. In (b) monoclinal flexuring is exaggerated but details of related ductile deformation are not shown. The precursory zone of faulting (bounded by the two

dashed lines) is idealized as a planar feature, whereas the modelled zone broadens upwards due to the predefined nature of the fault at the base of the model (larger

scale models, not presented here, indicate that a planar zone is most appropriate).’
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displacement accounts for up to 60 and 85% of the total

offset at throws of 0.5 and 1 m, respectively.

It is important to emphasize that only one model is analysed

in detail in this study. Different model realisations, with

different particle and bond spatial distributions (but identical

microproperty statistical distributions) exhibit variable fault

geometries due to differences in the locations of stress

concentrations causing fracture nucleation. Although the

exact locations of fractures and the magnitude and sense of

stepping across weak layers varies between realisations, the

overall fault dip and the relative timing and mode of failure

(strong layers first as Mode I fractures) is not affected by

varying particle and bond spatial distributions.
4. Implications for the 3D geometry of faults

in multilayer sequences

The ideal conceptual image of a normal fault is that of a

continuous surface entirely contained within a volume of rock

and bounded by an elliptical tip-line (Watterson, 1986; Fig. 3b);

more irregular tip-lines are attributed to the interaction with a
free surface or other faults (Nicol et al., 1996). For the ideal fault,

displacement varies continuously over the fault surface, with

contours of displacement concentric about a central maximum.

Relative to this simple model, our numerical model is best suited

to modelling the displacement accumulation along a vertical

chord from the maximum displacement to the upper tip line. For

normal faults this chord is characterised by displacement

parallel propagation, with no out-of-plane or lateral propagation

(Fig. 3b). Although our modelling demonstrates that, at least in

its early stages, the localisation of individual faults is, perhaps

not surprisingly, more complex than simple models suggest, the

general upward progression of deformation away from the

maximum displacement does adhere to that of the simple model.

This suggestion is developed further by combining interpret-

ations, using both finite (not shown) and incremental maximum

shear strain contour diagrams (Fig. 6), of the cross-sections for

different throw values of our DEM model, to produce a fence

diagram of the fault traces. The fault tip-points on this fence

diagram are joined to form continuous fault tip-lines outlining a

series offault segments (Fig. 12) which together represent a fault

with a maximum displacement of 10 cm at one end and zero

displacement on the other. Because the 3D fault plane shown in
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Fig. 12 is based on 2D modelling, it does not take account of out-

of-plane, or lateral, propagation effects, which are likely to

increase the complexities associated with fault zone localis-

ation. Nevertheless, the diagram illustrates several interesting

features. First, the degree of segmentation decreases with

increasing displacement until the segmented array is eventually

replaced by a continuous fault. Second, despite the segmented

nature of the fault, its overall shape approximates to one

quadrant of an elliptical fault surface; the retarded localisation

within layer C is responsible for the most significant departure

from an approximately elliptical form. Third, displacement

transfer across contractional steps is possible even when

segmented arrays are underlapping, i.e. the structure between

beds E and G at a throw of 4–8 cm. Finally, despite the complex

nature of the fault on this scale of observation, the fault segments

form a coherent array which, when considered together,

resemble a simple single fault. In detail, of course, the

segmented fault array shows a tip line that is more advanced

in the strong layers (labelled A, C, E and G) than in the weak

ones, a feature which suggests that within multilayer sequences

tip-lines will be fringed. It also shows that linkage of faults in

layers C and E via a shallow dipping fault in the intervening

weak layer produces a branch point where the segmented array

gives way laterally to a continuous fault. Most of all, this

geometry emphasizes the fact that the linkage of initially

vertically segmented faults does not imply that the faults grew

independently, a feature that is consistent with earlier models for

segmented fault arrays (Childs et al., 1995, 1996; see also the

coherent growth model of Walsh et al. (2003)).

Our numerical model therefore provides a basis for

extending the simple conceptual diagrams of Fig. 2 into 3D.

Fig. 13 shows that a continuous fault with nearly constant

displacements in cross-sectional view can give way laterally to

a fringed tip-line in which fault segments within strong layers

are more advanced than those within weak layers. For

simplicity the block diagram in Fig. 13 considers only

segmentation arising from lateral propagation. In reality

segmentation will be preserved over an entire fault surface if

displacements are not high enough to link between strong

layers. An increase in displacement, whether or not it is

accompanied by fault propagation, will lead to the progressive

replacement of the segmented array by a continuous fault. Even

where the fault is segmented we should expect displacements

to vary systematically over the fault surface. However, when

account is taken of both the discontinuous displacements on the

fault and the continuous displacements accommodated by

fault-related ductile deformations adjacent to the fault,

displacement variations are reduced. In proportional terms,

ductile deformation is likely to be more significant early in the

localisation process, when fault segments remain unlinked.

Continuity of displacement and related strains reflects the

underlying fact that segments within an initially segmented

array form a geometrically and kinematically coherent system,

in which neither the displacements nor the locations of

segments are incidental (coherent growth model; Walsh

et al., 2003; see also Childs et al., 1995).
5. Discussion

The discrete element method (DEM), as implemented in

PFC-2D, has been used to model the growth of a normal fault in

a brittle/ductile multilayer. The principal advantage of the

DEM compared with continuum methods (finite element, finite

difference and boundary element methods) is that discrete

fractures and faults with a large finite displacement can

be more effectively modelled; advances in combined

approaches (DEM–FEM) may, however, provide an even

better basis for future fault and fracture modelling. The

main limitations in the modelling approach in this study are

that the model materials are strain-rate independent and that

fluids and their effects (e.g. over-pressuring, precipitation of

minerals) are neglected. Despite these limitations, the

modelling is capable of reproducing many of the characteristic

features of natural faults, providing a mechanical rationale for

their geometry and growth. In particular, it provides a basis for

investigating whether normal faults in layered sequences

localise first in the strong layers or the weak layers (Ferrill

and Morris, 2003), a question that cannot be addressed using

conventional mechanical analyses such as Mohr stress

diagrams (Mandl, 2000).

The DEM models presented in this article incorporate

properly calibrated model materials that reproduce the

behaviour of natural rocks. The brittle/ductile multilayer

sequence comprises strong layers, which are brittle at low–

intermediate confining pressures and have elastic properties

and strengths similar to those of strong sedimentary rocks,

interbedded with weak layers, which are cohesionless,

frictional-plastic and cannot sustain bending moments.

Faulting in such a layered sequence leads to an increase in

layer parallel tensile stress (decrease in sIII) and an increase

in volumetric strain in the strong layers until the material fails

in tension (Mode I). Diffuse zones of pure shear dominated

deformation (squeeze flow) in the weak layers accommodate

small amplitude precursor folding of the strong layers prior to

failure. Deformation in these zones has a small rotational

component that is antithetic with respect to the main fault and

is in that respect similar to the antithetic ‘damage zones’ at

the tip of faults in homogeneous, non-layered rocks described

by Kim et al. (2003). Although both types of antithetic faults

form within a zone of distributed shear, the geometries of

antithetic faults in our DEM models are strongly affected

by layering, since they link the hinges of a fault related

monocline. In our model, Mode I fractures within the strong

layers form an initial vertically segmented fault array that is

later linked via shallow dipping faults in the weak layers. The

model results provide a mechanical basis for fault refraction

arising from different modes of faulting within different layers,

with tensile failure in the strong layers and shear failure in the

weak layers. At overburden pressures greater than that applied

here (Oca. 100 MPa) the strong layers in this model fail in

shear rather than in tension, but even in these circumstances

faults tend to initiate first within the strong layers and the fault

zone is an initially vertically segmented array. As in the low

effective stress model the fault dips within the strong layers are



Fig. 13. Conceptual growth model for normal faults cutting limestone layers of the

Buda Limestone (see Fig. 2). The block diagram is located at a lateral fault tip

(Fig. 3b). For simplicity the fault is shown with no vertical displacement gradient.

The block diagram was constructed using cross-sections shown in Fig. 2a and b.

Fig. 12. 3D fault plane constructed from interpreted fault traces from the PFC-2D model shown in Fig. 6 assuming the temporal fault zone evolution is equivalent to

spatial variation in fault zone structure with increasing displacement. Labelled layers (A, C, E and G) are strong layers. To construct this diagram, the lateral

displacement gradient was taken as 1:150, i.e. 1.5 m distance along strike between successive sections in Fig. 6. The fault is typically more advanced in the strong

layers; the advancement within layer C is approximated, since no section is available at a throw of 8.5 cm.
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controlled by the failure mode, whereas the fault dips

within the weak layers are mainly controlled by segment

linkage.

The model suggests also that abandoned fault tips or

splays are not essential features of an initially vertically

segmented array. Fault segments that underlap and do not

generate abandoned tips and splays when they link can form

coherent arrays and show complementary displacement

transfer, provided that the intervening volume can accom-

modate ductile strain. The model highlights the fact that the

initially vertically segmented fault array is geometrically and

kinematically coherent (Walsh and Watterson, 1991; Walsh

et al., 2003) and that the fault segments do not grow

independently in individual layers (Contra Benedicto et al.,

2003) but could link laterally into a continuous fault (fig. 9

in Childs et al., 1996).

The model also demonstrates that initial Mode I fracturing is

not necessarily an indicator of high pore pressure. Fluid pressure

only increases the depth of possible tensile failure since it

decreases the effective stress. Fault refraction at low effective

stress is not ‘due to high pore pressure’ but due to different types

of failure (extension vs. shear) in the different lithologies

(Peacock and Sanderson, 1992). The suggestion that fault

segmentation is a product of fault propagation (e.g. Jackson,

1987; Mandl, 1987; Cox and Scholz, 1988; Peacock and Zhang,

1993; Childs et al., 1996; Marchal et al., 2003; Walsh et al., 2003)
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is supported by DEM modelling, though the importance of

mechanical layering in controlling segmentation cannot be

overstated.
6. Conclusions

The DEM, as implemented in PFC-2D, has been used for

modelling the growth of a normal fault within a brittle/ductile

multilayer sequence. Our research suggests that the DEM is

capable of modelling the failure and localisation processes of

faulting, aspects that cannot be modelled adequately using

conventional continuum based methods. Our modelling

provides new insights into both the mechanics and kinematics

of faulting at low effective stresses and suggests the following

principal conclusions:

† Large dip variations, and related fault refraction, are due to

different types of failure (extension vs. shear) of layers.

† Normal faults in brittle/ductile sequences localise first in

strong layers as steeply dipping Mode I fractures and are

later linked via shallow dipping faults in weak layers. With

increasing displacement arrays of fault segments are

therefore replaced by a continuous fault.

† Faults contained in multilayer sequences have fringed tip

lines, where the fault is laterally more advanced in the

strong layers than in the weak layers. The extent of fringing

is a function of fault displacement and of the strength

contrast between the layers.

† Models for the 3D segmentation of faults in sedimentary

sequences must include the effects of rock properties and

mechanical layering.
Fig. A1. Plotting and reading Mohr circles for D. (a) The components of the

deformation tensor (D11 etc.) are derived from the corners of the deformed unit

square as shown. The deformation tensor for this parallelogram is also given.

(b) Mohr circle representation of the D tensor. The constructions for finding the

principal stretches, sI and sIII, the rotational component of deformation, u, and

the maximum angular shear strain, jmax, are illustrated. See Appendix A for

further explanation.
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Appendix A. Mohr Circles for D

An extremely useful graphical representation of the position

gradient tensor is the Mohr circle forD (e.g. Means, 1983, 1990).

Any 2D, homogeneous deformation can be written as

x1

x2

� �
Z

D11 D12

D21 D22

 !
X1

X2

 !
(A1a)

or more compactly as

xZDX; (A1b)

where X and x are position vectors for a particle in the

undeformed and deformed state, respectively, and D11, D12,

D21 and D22 are the components of the position gradient tensor

D, which contains information about the stretch and rotation

and is referred to as the deformation tensor in this Appendix.

The components of D can be obtained by deforming a unit

square into a parallelogram (Fig. A1a). Components D11 and

D21 are determined using the x1 and x2 coordinates of the

corner point that was located at (1,0) whereas components D12

and D22 are obtained using the x1 and x2 coordinates of the

corner point that was located at (0,1) in the undeformed state.



Fig. A2. Illustrations of Mohr circles for deformation, D, for a range of strain paths. For each labelled example the Mohr circles and the corresponding deformed unit

square in Cartesian coordinates (dotted lines) are shown (the finite state of strain is shown as solid lines and intermediate stages are shown as dashed lines). Strain

paths in (a)–(c) are constant volume deformation. The strain path shown in (d) is irrotational simple extension (dilation), (e) is rigid body rotation without stretching

and (f) is rigid body rotation (e.g. normal drag in the context of faulting) followed by simple extension (e.g. the formation of a Mode I fracture). In (d) and (f) only one

set of parallel lines exists that shows neither finite nor incremental stretch.
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A Mohr circle (of the first kind; De Paor and Means, 1984)

representing D is drawn using equally calibrated axes for the

normal (D11, D22) and shear components (D12, D21). Two

points are plotted at (D11, KD21) and (D22, D12), connected by

a line and a circle is drawn about this line (Fig. A1b). The polar

co-ordinates of any point on the D circle give the stretch and

rotation of a material line.

The principal stretches, sI and sIII (sIOsIII), can be

graphically obtained by intercepting the circle with a line
drawn from the origin through the centre of the circle (Fig.

A1b). The diameter of the Mohr circle is therefore related to the

intensity of stretching, since the ellipticity of the strain ellipse

is sI/sIII. The volumetric strain (strictly speaking area change),

which cannot be directly read off the Mohr diagram, is the

product of the principal stretches minus one.

Symmetric deformation tensors (D12ZD21) represent

irrotational deformation and associated Mohr circles have

their centre on the horizontal axis (Fig. A2b and d). Mohr
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circles of this kind are often referred to as Mohr circles for

stretch. Asymmetrical deformation tensors (D12sD21) rep-

resent rotational deformation (Figs. A1 and A2a and c). The

rotational component of any strain is given by

tanuZ
D21KD12

D11 CD22

(A2)

and can be obtained graphically by measuring the angle

between a line drawn from the origin to the centre of the circle

and the horizontal axis where, by definition, clockwise

rotation is negative (Fig. A1b). Off-axis circles centred

above the horizontal axis represent deformation with a

clockwise (by convention negative) rotational component

(Fig. A2a and c).

Rigid body rotation leads to circles with zero radius and

centres on a unit circle in the Mohr diagram (Fig. A2e). In this

study it has proven useful to plot a unit circle with its centre in

the origin and lines with slopes in 18 intervals (Fig. 8). These

guidelines assist in estimating the amount of rigid body rotation

prior to stretching.

The maximum angular shear strain is given by

tanjmax Z
s2

I Ks2
III

2sIsIII

(A3)

and can be obtained graphically by drawing a chord through

the centre of the circle perpendicular to the line that passes

through the principal stretches (Fig. A1b). The intersection of

the chord with the circles gives the points that represent

material lines that were perpendicular to each other in the

undeformed state (as usual double angles are measured in

Mohr circles). This pair of lines experienced the maximum

shear strain, since they are symmetrically arranged with

angles of G458 to the principal stretches in the undeformed

state (Fig. A1b).
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